인공지능/Machine Learning
[ML] Neural Network 예제
유일리
2022. 12. 1. 14:42
import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
#neural network class definition
class neuralNetwork:
#initialise the neural network
def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
#set number of nodes in each input, hidden, output layer
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
# link weight matrices, wih & who
# weights inside the arrays are w_i_j , where link is from node i to node j in the next layer
# self.wih = (numpy.random.rand(self.hnodes, self.inodes) - 0.5)
# self.who = (numpy.random.rand(self.onodes, self.hnodes) - 0.5)
self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes))
#learning rate
self.lr = learning_rate
# activation function is the sigmoid function
self.activation_function = lambda x: scipy.special.expit(x)
#train the neural network
def train(self, inputs_list, targets_list):
# convert inputs list into 2d arrays
inputs = numpy.array(inputs_list, ndmin = 2).T
targets = numpy.array(targets_list, ndmin = 2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
# error is the (target - actual)
output_errors = targets - final_outputs
# hidden layer error is the output_errors, split by weights, recombined at hidden nodes
hidden_errors = numpy.dot(self.who.T, output_errors)
# update the weights for the links between the hidden & output layers
self.who += self.lr * numpy.dot((output_errors*final_outputs*(1.0-final_outputs)), numpy.transpose(hidden_outputs))
# update the weights for the links between the input & hidden layers
self.wih += self.lr * numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)), numpy.transpose(inputs))
return final_outputs
#return output_errors
# query the neural network
def query(self, inputs_list):
# convert inputs list into 2d arrays
inputs = numpy.array(inputs_list, ndmin = 2).T
# calculate signals into hidden layer
hidden_inputs = numpy.dot(self.wih, inputs)
# calculate the signals emerging from hidden layer
hidden_outputs = self.activation_function(hidden_inputs)
# calculate signals into final output layer
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)
return final_outputs
#Main code
#number of input, hidden and output nodes
input_nodes = 2
hidden_nodes = 2
output_nodes = 2
#learning rate is 0.3
learning_rate = 0.3
#create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes, learning_rate)
final_outputs = n.query([0.05,0.10])
print('*')
print(final_outputs)
for e in range(10):
n.train([0.05,0.10],[0.01,0.99])
print('**')
outputs = n.query([0.05,0.10])
print(outputs)
for e in range(100):
n.train([0.05,0.10],[0.01,0.99])
print('**')
outputs = n.query([0.05,0.10])
print(outputs)
for e in range(10000):
n.train([0.05,0.10],[0.01,0.99])
print('**')
outputs = n.query([0.05,0.10])
print(outputs)
https://github.com/erica00j/machinelearning/blob/main/NN1.ipynb
GitHub - erica00j/machinelearning
Contribute to erica00j/machinelearning development by creating an account on GitHub.
github.com