dataset
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
df=pd.read_csv('/content/Housing.csv')
X = df[["price"]]
y = df["lotsize"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=10, shuffle=True)
model = LinearRegression()
model.fit(X_train, y_train)
plt.scatter(X_test, y_test)
plt.plot(X_test, model.predict(X_test), color="red")
plt.show()
print(model.score(X_test, y_test))
print(model.score(X_train, y_train))
metrics.mean_absolute_error(X_test, model.predict(X_test))
https://github.com/erica00j/machinelearning/blob/main/housing_linear_regression.ipynb
GitHub - erica00j/machinelearning
Contribute to erica00j/machinelearning development by creating an account on GitHub.
github.com
import numpy as np
from sklearn.linear_model import LinearRegression
X=np.array([[1,1],[1,2],[2,2],[2,3]])
y=np.dot(X,np.array([1,2]))+3
reg = LinearRegression().fit(X,y)
reg.score(X,y)
reg.coef_
reg.intercept_
reg.predict(np.array([[3,5]]))
https://github.com/erica00j/machinelearning/blob/main/final_linear_regression.ipynb
GitHub - erica00j/machinelearning
Contribute to erica00j/machinelearning development by creating an account on GitHub.
github.com
'인공지능 > Machine Learning' 카테고리의 다른 글
[ML] K-means clustering 예제 (1) | 2022.10.18 |
---|---|
[ML] Feature_Scaling 예제 (0) | 2022.10.18 |
[ML] Linear Regression (선형 회귀) (0) | 2022.10.18 |
[ML] Evaluation / Classification Report (precision, recall, F1 score) (0) | 2022.10.17 |
[ML] Evaluation / Confusion Matrix (0) | 2022.10.17 |
댓글